
The resulting form and water flow patterns are beautiful. The first image here shows what a ~3cm wide colony looks like from the top; the second image shows a different colony from the side. I used a sheet of light to illuminate just a single slice through the chimney in the second image. Colorizing each frame differently makes the flow stand out: moving particles appear as rainbows, while the still tentacles appear white.
The really cool parts about the chimneys that the colony organizes the chimneys based on information in the water flow that the chimneys control: the colony forms chimneys at the growing edge of the colony where the water flows out fastest [1], and can be induced to form new chimneys by manipulating the flow [2]. This feedback between water flow and form appears to allow them to respond to all sorts of perturbations that affect the water flow: injuries from predators, the formation of spines to defend against predators, variation in the form of the surface they grow on, etc [3].
This same kind of feedback between flow and form shows up in our blood vessels [4, 5], the gut/circulatory canals of hydroid colonies [6, 7], the veins of giant unicellular slime molds [8]. These systems evolved independently, serve different functions, and have very different structures, yet are united by the physics of moving fluids [9].
1. von Dassow, M., Flow and conduit formation in the external fluid-transport system of a suspension feeder. Journal of Experimental Biology, 2005. 208(15): p. 2931-2938 DOI: 10.1242/jeb.01738.
2. von Dassow, M., Function-dependent development in a colonial animal. The Biological Bulletin, 2006. 211(1): p. 76-82 DOI: 10.2307/4134580.
3. Grunbaum, D., Hydromechanical mechanisms of colony organization and cost of defense in an encrusting bryozoan, membranipora membranacea. Limnology and Oceanography, 1997. 42(4): p. 741-752.
4. Kamiya, A. and T. Togawa, Adaptive regulation of wall shear-stress to flow change in the canine carotid-artery. American Journal of Physiology - Heart and Circulatory Physiology 1980. 239(1): p. H14-H21.
5. Langille, B.L., Blood flow-induced remodeling of the artery wall, in Flow-dependent regulation of vascular function, J.A. Bevan, G. Kaley, and G.M. Rubanyi, Editors. 1995, Oxford University Press: New York, N.Y. p. 277-299.
6. Buss, L.W., Growth by intussusception in hydractiniid hydroids, in Evolutionary patterns: Growth, form, and tempo in the fossil record, J.B.C. Jackson, S. Lidgard, and F.K. Mckinney, Editors. 2001, University of Chicago Press: Chicago. p. 3-26.
7. Dudgeon, S.R. and L.W. Buss, Growing with the flow: On the maintenance and malleability of colony form in the hydroid hydractinia. American Naturalist, 1996. 147(5): p. 667-691.
8. Nakagaki, T., H. Yamada, and T. Ueda, Interaction between cell shape and contraction pattern in the physarum plasmodium. Biophysical Chemistry, 2000. 84(3): p. 195-204 DOI: 10.1016/S0301-4622(00)00108-3.
9. Labarbera, M., Principles of design of fluid transport-systems in zoology. Science, 1990. 249(4972): p. 992-1000.